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CALIBRATION OF ONE FACTOR INTEREST RATE MODELS
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Daniel Sevéoviéc — Alexandra Urbanova Csajkova

In this paper we introduce a two step optimization method for calibration of one factor interest rate models, in particular
of Cox, Ingersoll, and Ross model (CIR) and Vasicek model. In the first optimization step we minimize the sum of squares of
differences of theoretical yield curve computed from given models and real market yield curve. For this computation we use
an evolution strategy algorithm. The minimum is achieved on a one dimensional curve. In the second step we find the global
maximum of the likelihood function over this curve. We introduce the results of calibration for stable western European
financial markets and their comparison to emerging economies like, e.g., Slovakia, the Czech Republic and Poland.
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1 INTRODUCTION

There are many attempts to calibrate one factor inter-
est rate models. Classical approaches are based on Gen-
eralized Method of Moments [1], Gaussian estimation
method [5] or Monte Carlo filtering approach [8]. In all
these cases the purpose is to estimate the model parame-
ters for various western financial markets. For Central Eu-
ropean financial markets Vojtek (see [9]) estimated condi-
tional volatilities by using various types of GARCH mod-
els. Less attention is however put on one factor model pa-
rameters estimation and its possible application to Cen-
tral European countries. The main goal of this paper is
to make a contribution to this field and to estimate and
compare one factor model parameters for several Central
European financial markets.

In this paper we propose and analyze a new method
for calibration of one factor interest rate models to es-
timate model parameters. Two models are discussed in
this paper — the CIR and Vagi¢ek interest rate models.
Both of them have explicit solutions. We present a min-
max optimization method for calibration of considered
models. In the first step we minimize the sum of squares
of differences of theoretical yield curve computed from
given models and real market yield curve. The minimum
is attained on a one dimensional curve in four dimen-
sional model parameter space. Then by maximization of
the likelihood function on this curve we obtain the four
investigated parameters. The novelty of the method, to
our best knowledge, consists in the second step in which
we maximize likelihood function over restricted parame-
ter space. Finally, our method is applied to real market
term structure data from Euro-zone markets like EURO-
LIBOR, and emerging economies like Poland (WIBOR),
Slovakia (BRIBOR) and the Czech Republic (PRIBOR).

The paper is organized as follows: in Section 2 we
briefly review the one factor interest rate models, in par-

ticular CIR and Vagicek models. We also present the
transformation of parameters of these models and the op-
timal choice of some of these parameters. Section 3 de-
scribes the two step optimization method. We also discuss
a numerical method for finding the minimum of the cost
functional. In Section 4 we present the results of calibra-
tion for above mentioned real market data and Section 5
concludes the paper.

2 ONE FACTOR INTEREST RATE MODEL

One factor interest rate models are derived from an
assumption made on the behavior of a short interest rate.
We assume that the short rate follows the mean reverting
process of the form:

dry = k(6 — ry)dt + or] dwy (1)
where {w¢,t > 0} denotes the standard Wiener process
and k,0, o are positive constants. Parameter k is the
speed of reversion, ¢ is the volatility of the process and
0 is the limiting interest rate. The parameter v is deter-
mining the type of the model. If 7 = 1 then the model
derived from (1) is referred to as the Cox, Ingersoll, and
Ross (CIR) model [3,4]. If v+ = 0 then it is called the
Vasitek model [3,4]. The main step of deriving a one fac-
tor model is a construction of risk-less portfolio of two
bonds with different maturities. Applying the It6 lemma
we next obtain a parabolic partial differential equation
for the price of the zero coupon bond P = P(t,T,r)

op
ot

2
+(ﬁ(0—r)—5\(r)ar7)%—1: +%0’2T%TI; —rP =0, (2)

where ¢t € (0,7) and r > 0. The parameter X is dif-
ferent for the two discussed models. For the CIR model
we take A(r) = Arz/o whereas for Vagicek model we
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take 5\(7‘) = A. The parameter A represents the so-called
market price of risk. A solution P to (2) must satisfy
the terminal condition P(T,T,r) = 1 for any r > 0.
There is an explicit solution of PDE (2) for both models
and it can be written as: P(T — 7,T,r) = A(r)e” B,
7 =T —1t€[0,T], where the functions A, B satisfy

el 35-2) 22
(B = B(7)) for the Vasicek model, and
= (5 + A fgj)n(;n_r 1_) )+ 27
A(r) = (%B -, )2—'§

and 1 = +/(k + A)2 + 202 for the CIR model.

2.1 Parameter reduction

The idea of reducing the four dimensional parameter
space into three parameters is possible in the case of
CIR and Vasi¢ek model, too. The parameter reduction
for the CIR model consists in introduction the following
new variables:

B = e K+A+n

527277 ) QZ?

where n = v/(k + A)2 + 202. Returning back to the orig-

inal CIR parameters we have

=n26—1) =X, o=n/261—=¢)

where n = —In 3. Functions A(7), B(7) can be expressed
in terms of new variables §,&, o as follows:

! 1-8"
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As far as the Vagicek model is concerned we put

a2 o) o2
— p K - — — — = —. 4
B=e", &= %ZK,@% (4)
Then for the original Vasi¢ek parameters we have:
o2 oA
—Ing, o=2pk, 0_€+w+?
and, consequently,
1-p7
B(r) = -
M) =g

A(r) = exp(&(B(r) = 7) — 0B*(r) ) -

Summarizing, in both studied one factor models the yield
curve depends only on three transformed parameters 3, ¢
and p defined in (3) and (4), respectively.

3 TWO STEP OPTIMIZATION
METHOD FOR CALIBRATION OF ONE
FACTOR INTEREST RATE MODELS

In this section the calibration method for estimation
of one factor models parameters is discussed. The main
principles of the calibration of the CIR and Vagi¢ek model
parameters are the same.

3.1 Minimization of the cost functional

In order to measure the quality of approximation of the
set of real market yield curves by computed yield curves
from each model corresponding to present values of the
short interest rate value we consider the cost functional:
U(B,60) = 5 Xjmy £ 2iey (RE — Ri)?77. Tt measures
the time- welghted distance of the real market yield curves
{R;'., j=1,...,m} and the set of computed yield curves
{Ri,j=1,...,
the bond price — yield curve relationship Aje
G_Rj‘rj

m} at time ¢ =1,...,n, determined from

_BJ'R?) =

, where rt = R} is the overnight interest rate at
time ¢ = 1,...,n, A; = A(rj) and B; = B(7;) where
T < Ty < --- < Ty stand for maturities of bonds forming
the yield curve. We put 79 = 0. Expression of the cost
functional can be rewritten in form:

— B;E(Ro) + In A;)?

1 m
/865 E;

D(7jR; — BjRy)) (6)

where E(X;) and D(X;) denote the mean value and
dispersion of the vector X; = {X]’:,i =1,...,n}. So in
the first step we find the minimum of the cost functional

(6). We obtain the vector of (3,&,0) for any given A.

The parameter reduction described in the previous
section can be followed by optimal selection of some of the
parameters. Given § and £ we can pick an optimal value
for ¢ parameter in the CIR model; g%% = g%%(8,¢).
Indeed, solving the first order optimality condition %—U =

o
0 yields:

— Y (7;E(R;) — B;E(Ry))In A;

Jj=1

Z(ln 45 =

and so the optimal g, can be determined as follows:

i T E(R,) — BiE(Ro)) In 4;(8,6,1)
o = ST (InA;(B,€, 1)) ‘
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For Vasi¢ek model it can be derived in a similar way by
solving the equation % = 0. We have

m
0= (r;B(R;) — B;E(Ro) + {(B; — 7;) — 0B})B;.

Jj=1

It implies that for the optimal g¢P! for Vagi¢ek model we
have

opt _ Yty (1iE(R;) — B;E(Ro) + &(Bj — 75)) B
: S B '

In the case of VaSicek model we can furthermore pick
up the optimal value for the parameter £97* by solving
3¢ = 0. Then

0= (;E(R;) — B;E(Ro) +&(B; — ;) — 0B3)(B; — 73)

Jj=1

and the optimum parameter £2P! is:

opt — _Z;il(TjE(Rf) — B;E(Ry) — 0B3)(B; — ;)
T Yie1(Bj —15)? '

Solving the above two linear equations for optimal values
&Pt and %Pt we are yet able to conclude that £2P! and
0% depend on 3 only.

Summarizing, for the CIR as well as for the Vasicek
model we have first order necessary conditions for the
minimizer of the cost functional. These conditions can
be used either for further parameter reduction of the
problem (2D problem for the CIR model and even 1D
problem for the Vagicek model) or for testing whether
a numerical approximation is close to a minimizer. The
latter property has been used in practical implementation
of the minimization method.

We briefly discuss an optimization method for find-
ing the minimum of the cost functional U . The function
U need not be necessarily convex and therefore gradi-
ent method like, e.g., Newton-Kantorovich method may
capture a local minimum only. This is why we used a
robust numerical method generically converging to the
global minimum of U. There is a wide class of opti-
mization methods based on stochastic algorithms. These
methods are referred to as Evolution strategies (ES) (see,
e.g., [6,7]). In our case we used a slight modification of
the well known (p+c) ES. Recall that the (p+c¢) ES has p
parents and ¢ children (offsprings) per population among
which the p best individuals are selected to be next gen-
eration parents by their fitness value. The procedure is
repeated until some termination criterion is satisfied.

Now we describe our modification of (p+¢) ES called
(p+c+d) ES henceforth. In the start-up of the (p+c+d)
ES we randomly generate an initial population of p par-
ents consisting of vectors (8,&, ). There are prescribed
lower and upper bounds for components 3,¢ and g of
each vector in the starting population. In each step of the

ES algorithm we generate a set of ¢ offsprings from the
parent population (¢ < p). ¢ individuals from the par-
ent generation are perturbed by the Gaussian noise with
a zero mean and a fixed dispersion (0.01 in our case).
The modification (p + ¢+ d) ES comprise selection on
wider set. It means that we include a randomly gener-
ated set of d wild type individuals forming the so-called
wild population. The procedure of generation of the wild
type population is the same as for generation of the initial
population. Notice that we construct offsprings and wild
type individuals in such a way that the prescribed bounds
for 5,€ and p of each vector in the set are satisfied. To
each of the ¢ offsprings together with the d individuals
of the wild population we assign a fitness value represent-
ing the value of the cost functional U. Next we include
a corrector step consisting of improving the set of p par-
ents by NK iterates of the Newton-Kantorovich gradient
minimization method. As a result we obtain a set of p im-
proved parents. The best p individuals from the set of p
parents, p improved parents, ¢ offsprings and d wild type
individuals are selected to be the next generation of par-
ents. We repeat this procedure until the overall number
of steps is less than N. We also perform the first order
necessity test as described above. In our computations we
chose N =300, p=c=d = 10° and NK = 30. For
further details concerning ES based stochastic algorithms
and their convergence properties we refer to [6, 7].

Similarly as in the case of gradient optimization meth-
ods, for a general minimized function, an ES based
stochastic algorithm need not necessarily converge to the
global minimum. Additional assumptions like, e.g., con-
vexity made on a minimized function are required. We are
unable to verify these conditions in our particular case.
Nevertheless, our numerical experience based on repeated
experiments with different numerical constants indicates
that the ES algorithm described above indeed converges
to a global minimum of the cost functional U. Moreover,
an important question concerning existence and unique-
ness of a global minimum of U on 2 arises. Notice that
data vectors R;, j = 0,...,m, enter expression for U
in terms of their means and covariances. Now if a global
minimum of U is attained at several minimizers then one
can perturb input data vectors R; slightly in order to
destroy their multiplicity achieving thus a unique global
minimizer of U. Therefore, for generic data vectors R;,
j = 0,...,m, there exists a unique global minimizer of

U.

Finding the global unique minimum of U completes
the first step of the two step optimization procedure.

3.2 Maximization of a restricted likelihood func-
tion

Now we proceed with a second step of our method.
Notice that the aim of the first “minimization” step
of the method described in Section 3.1 was to find a
point (8,€,8) — a unique global minimum of the cost
functional U = U(f,&, ¢). Bearing in mind parameter
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Table 1. Numerical results of calibration for short term structures
for BRIBOR, WIBOR, PRIBOR and EURO-LIBOR (EULIB).

BRIBOR K o 0 A MLR
1/4 2003 ||688.298 | 8.960 | 0.0025 | -658.6 | 0.528
2/4 2003 | 38.467 | 1.509 | 0.0458 -6.3 0.719
3/4 2003 |598.875 | 8.276 | 0.0031 | -568.8 | 0.536
4/4 2003 |(793.487 | 9.396 | 0.0022 |-764.1 | 0.551
WIBOR

1/4 2003 | 10.103 | 0.622 | 0.0564 |-0.362 | 0.702
2/4 2003 | 7.459 0.877 | 0.0204 | -4.457 | 0.519
3/4 2003 |193.565 | 6.097 | 0.0029 | -189.9 | 0.371
4/4 2003 | 2.910 0.842 | 0.0004 | -3.09 0.388
PRIBOR

1/4 2003 || 0.098 0.007 | 0.0248 | 0.092 0.904
2/4 2003 | 36.934 | 0.728 | 0.0209 | -4.714 | 0.514
3/4 2003 | 2.823 0.060 | 0.0201 | -0.200 | 0.814
4/4 2003 | 3.385 0.097 |0.0187 | -0.626 | 0.685
EULIB

1/4 2003 | 34.118 | 0.689 | 0.0241 |-1.897 | 0.712
2/4 2003 | 0.734 0.024 | 0.0244 | 0.276 0.864
3/4 2003 | 40.018 | 0.699 |0.0175 | -7.797 | 0.703
4/4 2003 | 9.217 0.286 | 0.0178 | -2.243 | 0.758

reduction described in Section 2.1 there exists a C*°
smooth one dimensional curve of original model param-
eters (ky,0x,0x,A\) € R* parameterized by A € J cor-
responding to the same transformed triple (3,¢,d) for
which the minimum of U (in terms of transformed vari-
ables (3,&, p) is attained.

In order to construct estimation of the model param-
eters k,0,0,\ we proceed with the second optimization
step in which we find the global maximum of the stan-
dard Gaussian likelihood function (LF) over the above
mentioned A parameterized curve representing of global
minimizers of the cost functional U. The two step opti-
mization method combines the maximum likelihood es-
timation with minimization of the cost functional U. In
the case of parameter estimation of a stand-alone short
rate process having the form (1) the LF is:

n

Z (ln vy +

t=2

In L(k,0,0) =

‘*M H.m
N——"

l\)ll—‘

where v? = % (1—e2%) Y, € =T —e TRy g —6(1—
e~ ") (see [2]). If estimation of model parameters (k, o, 6)
is realized by maximization of likelihood function over
the whole set R3 then the maximum is unrestricted. The
value of the unrestricted maximum likelihood function is:

InL* =In L(k*,0%,0*) = max InL(k,0,6).

K,0,6>0

In our approach we make use of restricted maximization
of In L. over the A parameterized curve

{(kx,0x,0)), X € J}. This can be expressed in original
model parameters as follows:

InL" = lnL(Klj\,U;\,Q;‘) = magclnL(m,a,\,G,\),
AeJ
where J = (—00,7(26 — 1)) in the case of the CIR

model and J = R for Vasicek model. The argument
K = k3,0 = 03,0 = 05 of the maximum of the restricted
likelihood function In L” is adopted as a result of two step
optimization method for calibrating the model parame-
ters. A global maximizer of the unrestricted likelihood
function In L* has been computed by the same variant of
the ES algorithm described in the previous section. Since
maximization of the restricted likelihood function In L"
is performed over one dimensional parameter A and the
function A — In L(ky, 0, 0)) is smooth we could apply a
standard optimization software package Mathematica in
order to find a global maximizer of the restricted likeli-
hood function.

For measuring the accuracy of calibration we intro-
duce the maximum likelihood ratio (MLR) as a ratio of
the maximum values of the restricted In L”™ and unre-
stricted In L* likelihood functions. We have MLR < 1
and if MLR is close to 1 then the restricted maximum
likelihood value is close to the unrestricted one. In this
case one can therefore expect that the estimated values
(R,5,0) of the model parameters are close to the argu-
ment (k%,o%,0%) of the unique global maximum of the
unrestricted likelihood function. It may indicate that a
simple estimation of parameters based on the mean re-
version equation (1) for the short rate process r; is also
suitable for estimation of the whole term structure.

4 RESULTS OF CALIBRATION

In this section we present the results of calibration
for various European financial markets data like BRI-
BOR (Slovakia), PRIBOR. (the Czech Republic), WIBOR
(Poland) and EURO-LIBOR (Euro-zone data). In Ta-
ble 1 there are quarterly results of calibration for BRI-
BOR, WIBOR, PRIBOR and EURO-LIBOR for year
2003. There are presented estimated parameters k, 6,0, A,
and, the value of the Maximum likelihood ratio.

Behavior of the long term average interest rate 6 is
confirming the character of real interest rate of given data
in a given period. The market price of risk A\ is neg-
ative in most time periods. There are some short time
periods, where the market price of risk is positive for
EURO-LIBOR (2nd quartal). The volatility of the mean
reverting process is very high for Slovak data. The same
behavior can be observed for the parameter x. On the
other hand, results for the Czech data enables us to con-
clude that behavior of PRIBOR is very similar to EURO-
LIBOR. The overall quality of calibration is better for
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Fig. 1. Results of parameter estimation for various term structures.

PRIBOR and EURO-LIBOR. The maximum likelihood
ratio (MLR), which measures the appropriateness of CIR
model for the data, is higher for western European finan-
cial market data than for the emerging economies except
of the Czech PRIBOR.

In Fig. 1 we compare the results of calibration for
EURO-LIBOR, BRIBOR, PRIBOR and WIBOR. This
graph displays MLR and estimated parameters # and o
for the CIR model. Mostly, the MLR is better for EURO-
LIBOR and worst for BRIBOR. For the last two samples
(PRIBOR and WIBOR), it is varying. For PRIBOR and
EURO-LIBOR the results are similar not only for 8 but
also for o. The estimated volatility ¢ is considerably high
for the Slovak term structure. The parameter 6 is also
quite volatile for the Slovak data.

5 DISCUSSION AND CONCLUSIONS

In this article we have presented a nonlinear regres-
sion method for calibration of well known Cox, Ingersoll,
and Ross model and Vagi¢ek model. In the first optimiza-
tion step by ES, we have found the minimum of the cost
functional for fixed A. In the second optimization step we
have maximized the maximum likelihood function over A.
We have calibrated real market term structures from var-
ious economies (stable western and emerging) for years
2001-2003. The accuracy of the calibration was tested
with MLR tests. The MLR was in the range 0.7-0.9 for
the western Europe markets data and it belonged to the
range 0.4-0.6 for the emerging economies. According to
our results we can state that the western European mar-
kets data are better described by CIR model. In emerging
economies we can also use the CIR model but only for the
Czech data.
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